空港滑走路上の落下物を 検知するレーダシステムの開発

河村暁子,二ツ森俊一,米本成人 電子航法研究所

本発表の概要

- > 空港滑走路上落下物とは?
- ▶ 本プロジェクトの全体像
- > レーダ部
- > アンテナ部
- > まとめ

空港滑走路上の落下物とは?

- ・航空機から落下した部品、金属片
- ・ 作業者が忘れた工具類

滑走路上落下物検出の必要性

2000/07/25 コンコルド墜落事故

16:39 DC10離陸. 機体より42 x 3cm チタニウム片が落下.

16:42 コンコルド離陸.離陸時にチタニウム片でタイヤが破裂,破片が燃料タンクを損傷.

→ コンコルド墜落

現状:

1日1回,空港職員の目視による滑走路パトロールパイロットから落下物の報告があれば随時調査

仏運輸省事故調査局報告書より

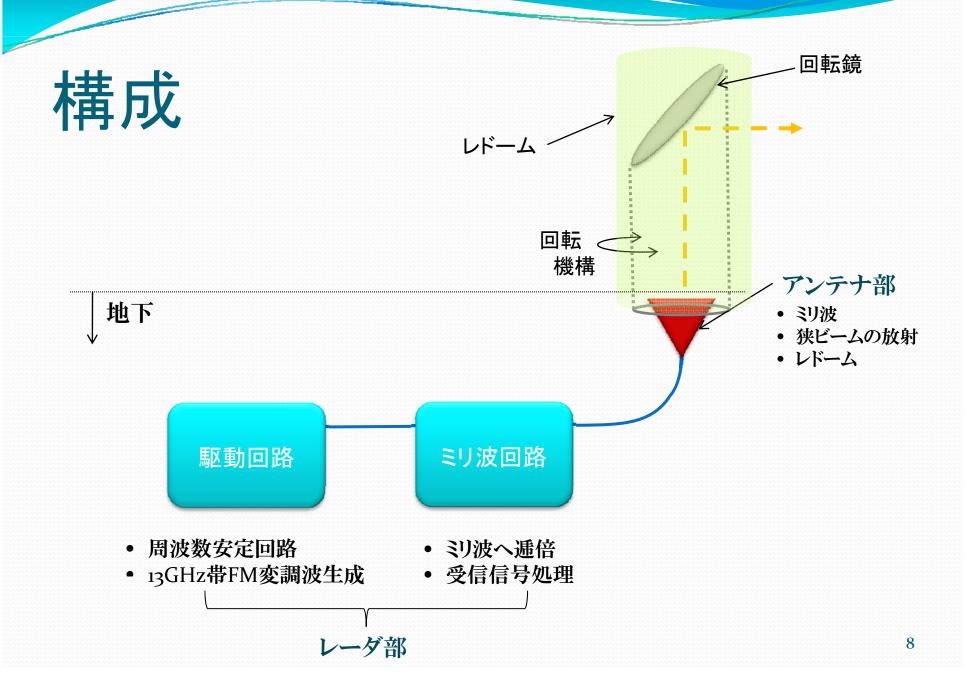
約10cm程度の落下物を検出できるセンサが求められている

各種センサ	寸法	距離測定	精度	感度	朝夕	夜間	秀	雨	価格	備考
カメラ	0	×		0	0	×	×	\(\)	0	費用対効果が高い。
赤外線カメラ	0	×	1	1	×	0	\triangleright	Δ	\triangleright	感度は温度差に依存。 早朝、夕方に不能
レーザ	0	0	0	0	0	0	Δ	×	×	悪天候に弱い。
既存 レーダ	Δ	0	×	Δ	0	0	0	0	\rangle	波長より小さいもの、 非金属は検出困難。
ミリ波 レーダ	0	O → ⊚	$\overset{\triangle}{\rightarrow}\overset{\bigcirc}{\circ}$	0	0	0	0	Δ	× ↓ △	↓は今回の開発目標

本プロジェクトの完成予想図

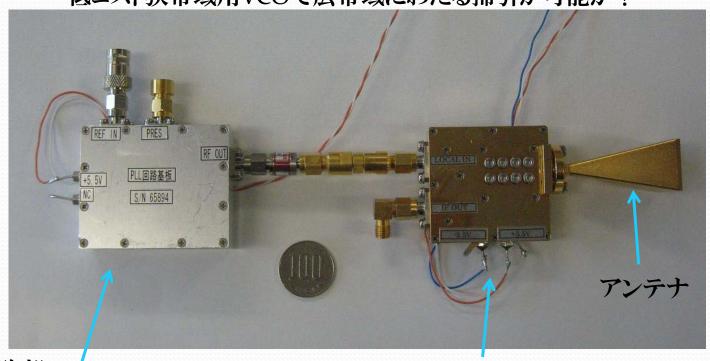
- ・小型ミリ波レーダ
- 次期自動車レーダ用特定小電力局 (76 - 81 GHz, 出力 10 dBm)
 現在: 76.25 - 76.75 GHz, 10 dBm)
- 低出力レーダを滑走路脇に複数設置
- 機械式ビームスキャン
- 高価な回路部は地下へ、安価なビーム反射機構およびレドームのみ地上へ

目標とする仕様


• 小型

無線回路はマッチ箱程度に 導波管ではなくマイクロストリップ線路使用、ミリ波帯 FM-CWレーダ方式

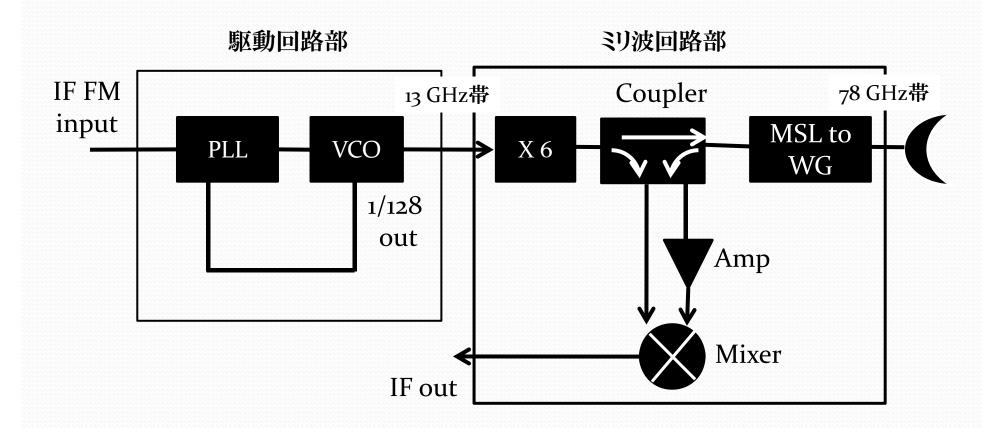
• 高い分解能


約10 cmの金属片を検出したい→ミリ波 距離分解能→広い周波数掃引

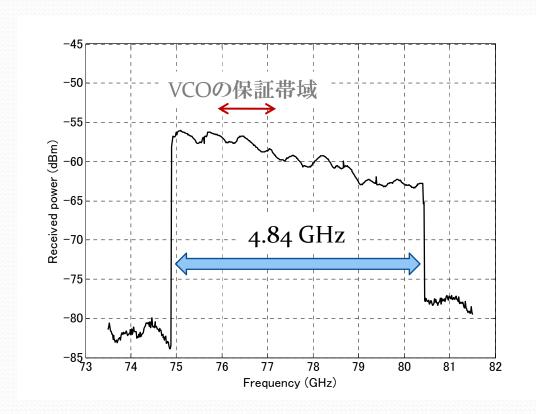
- 電波法への適合(次期自動車レーダ用カテゴリ)
 - 周波数: 76 81 GHz
 - 出力: 10 dBm(10 mW)

レーダ部

低コスト狭帯域用VCOで広帯域にわたる掃引が可能か?

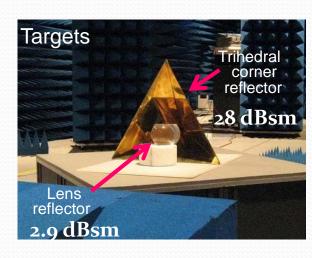


駆動回路部 (VCO, PLLを含み,参照波をもとに 13 GHz帯の三角波を発生)


VCO: 電圧制御発振器, PLL: 位相同期回路, IF: 中間周波

ミリ波回路部(76~81 GHzのレーダ信号放射 および受信,ミキサを経て IF信号を出力)

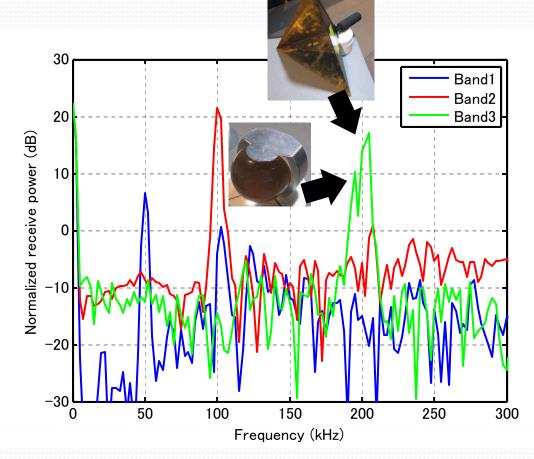
レーダ回路


広帯域送信信号

Bandwidth: 4.84 GHz (75.57 – 80.41 GHz)

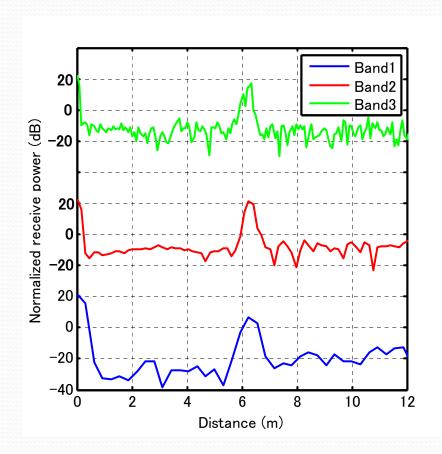
Output power: 8.72 dBm (at 76 GHz)

近接した物体の検出



距離 6 m, 物体間 15 cm

Band1: 1.20 GHz


Band2: 2.40 GHz

Band3: 4.84 GHz (最大)

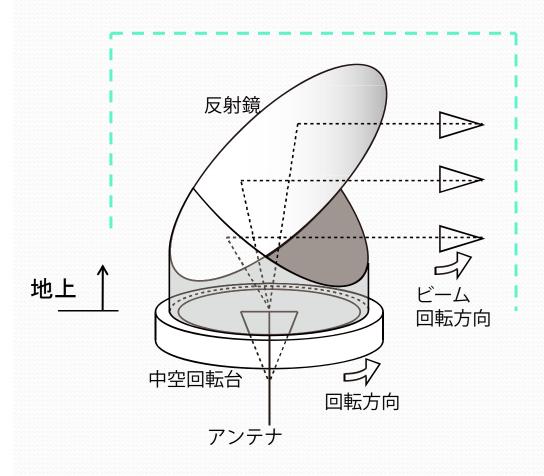
バンド幅4.84 GHz使えば反射の大きい物体に近接した小さい物体も検出可能

試作したレーダの分解能



	Bandı	Band2	Band3
BW (GHz)	1.20	2.40	4.84
Theoretical ⊿R (cm)	11.1	5.5	2.7
Measured ⊿R (cm)	46.3	23.8	6.8 (Min)

レーダの広帯域化により最小6.8 cmの分解能を達成


レーダ部まとめ

- ✓ 市販のVCOを用いて4.84 GHz 掃引できる広帯域レーダを作製
- ✓ ひずみなどあるが,大RCS物体に近接した小RCS物体も検出可能
- ✓ 最小分解能6.8 cm を達成

RCS(Radar cross section: レーダ反射断面積)

アンテナ部

- アンテナは1次放射器と反射鏡で 構成
- 反射鏡が回転し、ビーム走査
- 地上に出る回転部をすべてレドームで覆う

レーダ用アンテナ

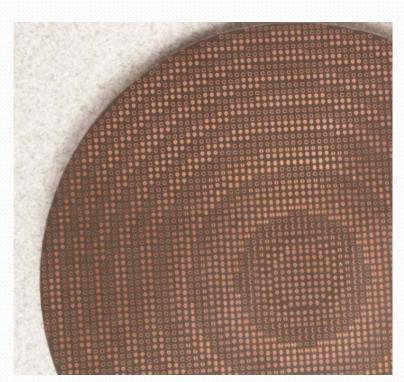
空港滑走路上落下物検出用レーダのアンテナに求められる特性

• 高い利得

4odBiまでは特定小電力無線局扱い レーダの低出力を補う

広帯域
周波数 76 ~ 81 GHz で動作

- 高い開口面効率 コンパクトで高利得
- 円偏波 角度に依存せず物体を検出

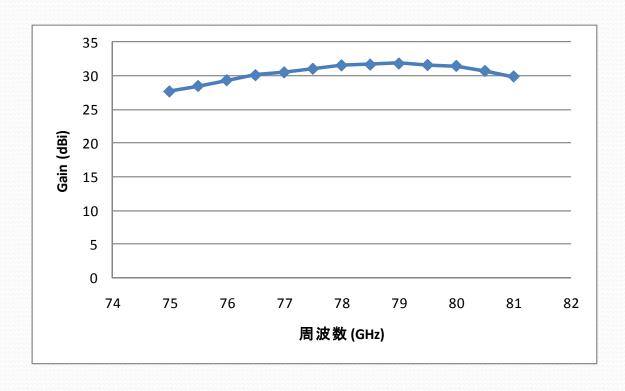

プリント型フレネル反射板アンテナ

1次放射器 (切り離し導波管) プリント基板上にパッチアレイを 同心円状に構成

- フレネルレンズ効果 集光効果による鋭い指向性 高利得,高開口率
- パッチ形状で移相量を調整 1次放射器の直線偏波を 円偏波へ変換
- 小型,軽量,低コスト

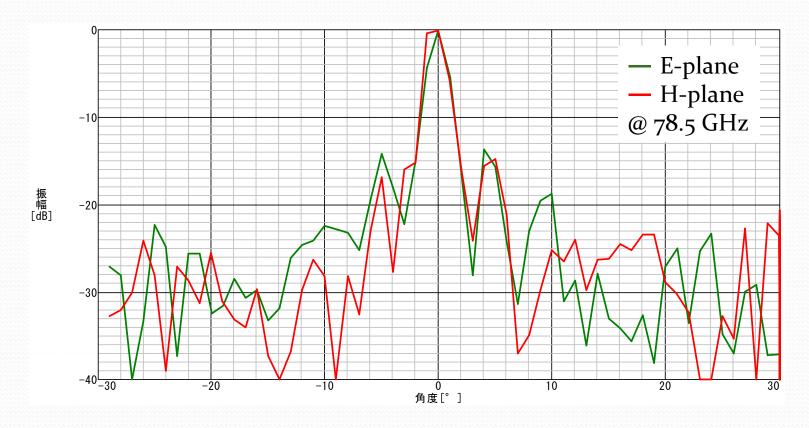
パッチ形状,配置

反射板直径150 mm 誘電体厚0.508mm(裏面は金属)


78.5GHz におけるパッチ単体特性

	100		Phase	Characteristics		
Zone	Patches	φ_x in $^{\circ}$	φ_y in $^\circ$	$\Delta arphi$ in $^{\circ}$	$\Delta arphi$ in $^{\circ}$	A.R in dB
0° zone	1	0	89	89	89	0.6
45° zone		42	131	89	89	0.14
90° zone	0	90	178	88	93.1	0.47
135° zone		131	220.7	89.7	90.47	0.07
180° zone		179	268.4	89.4	88.1	0.33
225° zone		225	316.1	91.1	90.7	0.22
270° zone	0-	271	358.4	87.4	88.7	0.41
315° zone	-0	314	402.8	88.8	86.1	0.6

A.R: 軸比


18

アンテナ利得

76 - 81 GHz で概ね 28 dBi以上の利得 開口面効率: 最大10 % (at 79 GHz)

アンテナの放射パターン

半值幅: 1.7 deg.

サイドローブ: -14 dB

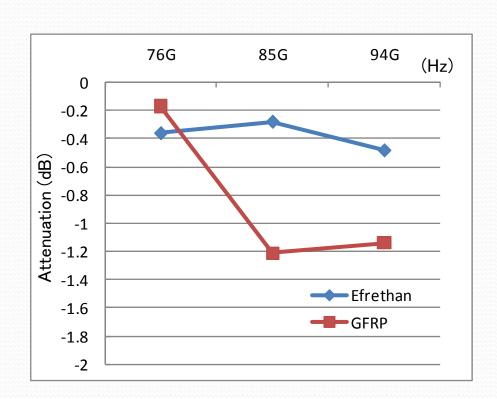
ミリ波用レドーム

- アンテナ・レーダ回路を 雨,風,埃などから保護
- ある程度の強度が求められる ただし航空機に当たれば壊れること
- ・ミリ波帯電磁波の伝搬に影響しないこと 波長約4 mm 従来よく使われているGFRPは散乱あり

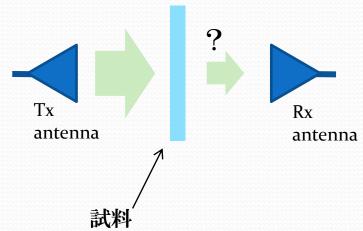
エフレタン製レドームの使用を提案

GFRP: Glass Fiber Reinforced Plastics ガラス繊維強化複合材料

エフレタン

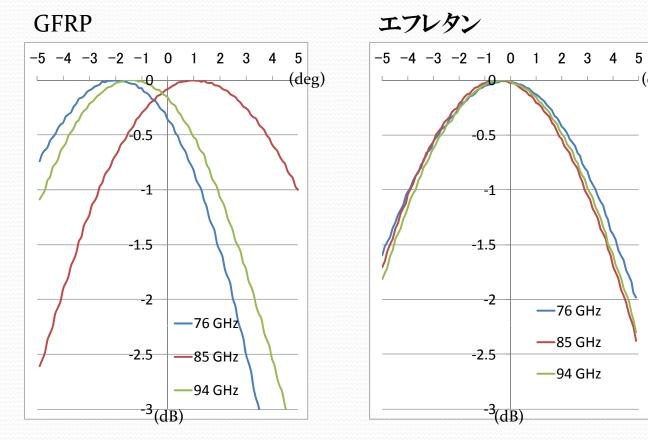


エフレタン吹き付け塗装の様子


- ウレタン樹脂
- 発泡スチロールに塗装
- 塗膜は耐衝撃性, 防水・耐久性に優れる
- GFRPに比べ低コスト
- 比誘電率 3.8
- 応用分野

建築土木材,保温保冷容器, 海洋湖沼河川用浮力材(浮き桟橋), 美術工芸品など

レドームの透過率


試料があることによって生じる 減衰量を測定(理想は0dB)

エフレタンはGFRPに比べ損失が少ない(透過率が高い)

レドーム材料の周波数依存性

エフレタンならば、ビームの曲がりがおきにくい

アンテナ部まとめ

フレネル反射板アンテナ ミリ波用レドーム を開発

小型・軽量・低コスト アンテナ 利得 31.8 dBi, 開口面効率 10 %

参考: 同タイプの94GHz直線偏波アンテナ 利得 38 dBi, 開口面効率 29%

まとめ

空港滑走路上の落下物検出用ミリ波レーダシステムについて紹介

✓ レーダ部

- 汎用VCOで4.8 GHz帯の掃引に成功
- 分解能 6.8 cm 達成

✓ アンテナ部

- 小型軽量なフレネル反射板円偏波アンテナを開発
- 利得向上のためさらなる改良が必要
- ミリ波アンテナ用低損失レドームを開発

今後の課題

レーダ部

- > 無線局免許の取得
- ▶ 最大レンジの測定

アンテナ部

- ▶ アンテナ利得向上の検討
- > レーダビームの回転機構部の開発
- ▶ データ表示ソフトウェアなどの開発
- > 全体の連接試験